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COMMENT 

Comments on constraints of gauge theories 

Reiji Suganoi and Toshiei KimuraS 
t Department of Physics, Osaka City University, Osaka 558, Japan 
$ Research Institute for Theoretical Physics, Hiroshima University, Takehara, Hiroshima 
725, Japan 

Received 4 July 1983 

Abstract. Due to an improper interpretation of the relation of first-class constraints to 
gauge degrees of freedom, many authors have asserted that all primary and secondary 
first-class constraints are associated with gauge freedom and enter in the generator of the 
evolution of the system. By presenting several examples we show that secondary first-class 
constraints are not associated with gauge degrees of freedom, but only intrinsic first-class 
constraints yield gauge freedom. 

In previous papers (Sugano and Kamo 1982, Sugano 1982, Sugano and Kimura 
1983a, b), we investigated dynamical systems with constraints and showed that secon- 
dary first-class constraints (FCC) are not necessarily associated with gauge degrees of 
freedom, but only intrinsic FCCS yield gauge freedom. Our argument was based on 
the consistency between the velocity phase space formalism and the phase space one, 
or a consistent quantisation by means of the Dirac formalism. The intrinsic constraints 
Om are defined by the constraints which are related to the kernels r t  of the Hessian 
matrix A ,  = a2L/aq' ad' by (Sugano and Kamo 1982) 

T :  = aam/ap, (U = 1 , .  . . , r ;  i = 1 , .  . . , n )  (1) 
Ai,76, = 0 

where p I  are momenta conjugate to q i  and the rank of A,, is supposed to be n - r .  
The symbol = means identity or weak equality (=), that is, equations (1) and (2) are 
identities for primary constraints, while being weak equalities for secondary ones. The 
latter case occurs when the rank of A,, is reduced by constraints. 

In order to quantise such a dynamical system with FCCS by means of the Dirac 
bracket method, we must impose gauge conditions to turn all FCCS into second class 
constraints (SCC) and to pick up physical variables. Since the number of gauge 
constraints which can be arbitrarily chosen is not more than the number of gauge 
degrees of freedom (i.e. the number of intrinsic FCCS), non-intrinsic FCCS usually remain 
intact as FCCS. To convert the non-intrinsic FCCS into sccs consistently we proposed 
two methods (Sugano and Kimura 1983a, b). One is to employ, on the constraint 
submanifold, stationary constraints independent of the gauge conditions. Such station- 
ary constraints are essentially equivalent to first integrals of equations of motion of 
the system, so that they are not external constraints. An alternative method is to 
choose gauge conditions such that the required number of descendant constraints 
follows by repeating, the same times as the number of the secondary FCCS, the algorithm 
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with respect to stationarity of the gauge constraints and gauge functions U in the total 
Hamiltonian are fixed in the final step of the algorithm. The existence of such gauge 
conditions was proved (Sugano and Kimura 1983b), provided that a further condition 
such as Lorentz covariance was not imposed. 

Due to an improper interpretation of the relations of the gauge degrees of freedom 
to the FCCS, there have still appeared arguments asserting that all primary and secondary 
FCCS are associated with gauge freedom (Gotay 1983, Di Stefan0 1983, Appleby 1982). 
The aim of this paper is to repeat again our proposition presented in the previous 
papers by showing further examples (especially in connection with the examples given 
by Gotay (1983)). 

Let us first consider the case of electromagnetic field. From the Lagrangian density 

L = -'F 4 ,  J W "  with FPy = a,A, - a,A, 

we obtain the canonical Hamiltonian density 

H = 4 r k r k +  rk  akAo+$i,FFi' 

and the primary and secondary FCCS 

@ = r o Z O  x = a k r k  = o 
where r@ are momenta conjugate to A,. 

If the extended Hamiltonian density 

HE = H + U o r n  + U1 d k r  = HT+ a k r k  

is employed as the generator of evolution of the system and @ and ,y are associated 
with the gauge degrees of freedom, we shall be led to inconsistent results. Since two 
independent gauge conditions may be arbitrarily chosen in this case, let us take the 
gauges 

'Pn=Ao"O 9' = A 3 = 0 .  ( 6 )  

(7) U,, = 0 1 -  3 77 

~3=~33AO-aOA3"0. (8) 

Then we obtain from the stationarity condition of 9' and 9' 
U -8 -1  3 

and 

From 7i3 = 0 and the equations of motion 

+ k  = a,FIk 

it follows that 

a3(d1A1 + azA2) == 0. (9) 

So, we have only one independent component A2 (or A, )  for a wave propagating in 
the x I - x ~  plane (or the x2-x3 plane). 

This inappropriate result is due to imposing two independent gauge conditions. 
On the other hand, instead of the Lagrangian density (3), Gotay (1983) took a 

modified one 
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where A is a Lagrange multiplier. Then we find 

and 

Secondary constraints are 
k X I  = ?To = 0 x 2 = a k 7 T  =o. 

@, x1 and x2 are FCCS so that the extended Hamiltonian density is 

(14) 

q o = A = z O  Y1 =Ao=O 'P2 = A3 = O  (15)  

H E = H T = u ] r o + u 2 d k r  k 

Now choosing the three gauge conditions 

we obtain again (9). 
It should be noticed, apart from the gauge conditions, that the definition of momenta 

T o  = A - ' ( &  - a k A k )  nk =Ak-akAO (16) 

+ Ul A k  = 7Tk + dkAo-  dku2 (17) 

and the equations of motion derived from HE 

yield ul = u 2 = 0 ,  owing to the constraints (13) .  A similar argument for the ordinary 
Lagrangian density (3)  and HE of ( 5 )  leads to u1 = 0. It means that the Hamiltonian 
consistent to the Lagrangian formalism is not HE but HT = H +U,@. 

In connection with FCCS, we next comment on degrees of freedom of a dynamical 
system. In order to eliminate a degree of freedom, two constraints are in general 
needed, irrespective of any class of constraints. For primary FCCS fDA in the phase 
space, gauge conditions Vu", are imposed to eliminate the corresponding gauge variables. 
For secondary FCCS x i  where 

(18)  
the corresponding degrees of freedom should be eliminated by imposing constraints 
'Pi. Here all 'P i  must be stationary on the constraint submanifold. Then Vi except 
'P i  are not arbitrary but essentially first integrals of equations of motion (note that 
the stationary constraints @ A  and x i  are essentially a sort of first integrals whose 
integration constants are fixed to particular values). A consistent set of ' P i  is obtained 

xi ={xi-'> HT) ( k  = 1,  . . . , m,) 

successively by (Sugano and Kimura 1983b) 

'P i  ={'Pi-', HT} ( k =  1 , .  . . , m,) 

with the conditions 

{@.A, *;,} = 0 

{ @ A ,  VZA) # 0. 

(for 1 < mA,) 

For the Lagrangian density (3) for the electromagnetic 
by (4a, b) .  The Coulomb gauge 

qo = aiAi ;5; 0 

(20) 

fields, the FCCS are given 

(21a) 
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and by @ I  = O ,  the gauge function uo in HT= H +  coro  is fixed to be zero. @, x, WO 
and q1 form a set of stationary SCCS by which two unphysical components are 
eliminated. 

We note that the generator of the gauge transformation for the Lagrangian density 
(3) is given by 

G =  d4x [&(x)@-E(x)x]= d4x a,&(x) * T ' ( x ) .  (22) 5 5 
Next it should be noted that the temporal gauge A.  = 0 without taking account of 

dkAk = 0 is not enough to eliminate the two unphysical components, even if physical 
states are restricted by 

(23) 

As is well known, an inconsistent result is derived from (23). A consistent constraint 
is given by 

Xlphys) = dkTkIphyS) = 0. 

(dkTk)+lphyS) = 0 (24) 

where the positive frequency part of d k T k  can be expressed in the momentum space 
in terms of x = akrk and 9' = akAk for the temporal gauge: 

x+(p) = (2T)-3/2 1 d3x e-'"J=[x(O, x) -ip,q'(O, x)] (25) 

owing to x and 9' being time independent. This equation shows that both x i= 0 and 
9 ' = 0  should be taken into account in order to guarantee (24). From the above 
argument, it will be not difficult to see why the quantisation of the Yang-Mills fields 
in the temporal gauge with the restriction 

( d k  + gAk X ) Iphys) = 0 

is questionable (Kakudo et a1 1983). If it is assumed that g+O in asymptotic states, 
we have the same situation as for the electromagnetic fields. 

Gotay's interpretation (Gotay 1983) of degrees of freedom concerning the 
Lagrangian 

L = (1/2X)>j2 (26) 

is also inadequate. In the phase space we have 

( 2 7 )  H -1 
T - 2xP: + UP, 

and 

@ = P x  x=py  ( 2 8 )  

\ v o = y + c  (29) 

Then p x  and p ,  are not true dynamical variables. Now putting 

we obtain 

{VO, HT} = xp, = 0 
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namely '4'' is a constant of motion. Hence '4'' may be arbitrarily chosen: 

P 1 = X + C '  (30) 
and then {P', HT} = U = 0. The @, x, Po and q1 are sccs and reduce the phase space 
to one point. 

This system has only one gauge degree of freedom for an x transformation, as is 
easily seen in the Lagrange formalism. The generator of the gauge transformation 
(Sugano and Kamo 1982) is 

G = i ( t ) p , - t ~ ( t ) p :  ipx. (31) 
Gotay did not think of imposing another stationary constraint conjugate to the secon- 
dary FCC x. So he asserted that the system has 4 degrees of freedom when ,y =pr is 
not associated with gauge freedom. 

The Lagrangian (26) is a special example. A more proper example illustrating this 
circumstance was presented in our previous paper (Sugano and Kimura 1983a). 

Consequently the secondary FCCS are not associated with gauge degrees of freedom 
but only the intrinsic FCCS yield gauge freedom. For the secondary FCCS, we should 
impose stationary (not arbitrary) constraints or descendant constraints which follow 
from arbitrary gauge conditions. 
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